BiCR-type methods for families of shifted linear systems
نویسندگان
چکیده
The shifted linear systems with non-Hermitian matrices often arise from the numerical solutions for time-dependent PDEs, computing the large-scale eigenvalue problems, control theory and so on. In present paper, we develop two shifted variants of BiCR-type methods for solving such linear systems. These variants of BiCR-type methods take advantage of the shifted structure, so that the number of matrix-vector multiplications and the number of inner products are the same as a single linear system. Finally, extensive numerical examples are reported to illustrate the performance and effectiveness of the proposed methods.
منابع مشابه
New variants of the global Krylov type methods for linear systems with multiple right-hand sides arising in elliptic PDEs
In this paper, we present new variants of global bi-conjugate gradient (Gl-BiCG) and global bi-conjugate residual (Gl-BiCR) methods for solving nonsymmetric linear systems with multiple right-hand sides. These methods are based on global oblique projections of the initial residual onto a matrix Krylov subspace. It is shown that these new algorithms converge faster and more smoothly than the Gl-...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملAn Extension of Two Conjugate Direction Methods to Markov Chain Problems
Motivated by the recent applications of the conjugate residual method to nonsymmetric linear systems by Sogabe, Sugihara and Zhang [An extension of the conjugate residual method to nonsymmetric linear systems. J. Comput. Appl. Math., Vol. 266, 2009, pp. 103–113], this paper describes two conjugate direction methods, BiCR and BiCG, and attempts to extend their applications to compute the station...
متن کاملBlock Krylov subspace methods for shifted systems with different right-hand sides
We present some new techniques for solving a family (or a sequence of families) of linear systems in which the coefficient matrices differ only by a scalar multiple of the identity (shifted systems). Our goal is to develop methods for shifted systems which have fewer restrictions usually associated with such methods (e.g., all residuals needing to be collinear). The systems are parameterized by i,
متن کاملSolving large systems arising from fractional models by preconditioned methods
This study develops and analyzes preconditioned Krylov subspace methods to solve linear systems arising from discretization of the time-independent space-fractional models. First, we apply shifted Grunwald formulas to obtain a stable finite difference approximation to fractional advection-diffusion equations. Then, we employee two preconditioned iterative methods, namely, the preconditioned gen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Computers & Mathematics with Applications
دوره 68 شماره
صفحات -
تاریخ انتشار 2014